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Executive Summary
With the release of TI-Nspire™ math and science learning handhelds and software, Texas

Instruments offers a learning platform with augmented capabilities that extend its traditional

graphing calculator line. We anticipate that educators and researchers will look at this new

platform as an opportunity to advance mathematics teaching practice and student learning

outcomes. The platform includes both new features on the handheld device as well as the

classroom networking capabilities: it is a platform for calculating, representing and

communicating mathematically. One key new capability is that students work in a “document”, an

organized presentation of multiple screens of mathematics which can be saved, shared, annotated,

and revisited. We suggest a framework which educators and researchers may find helpful in

articulating the research basis for their efforts to improve teaching practices and mathematics

achievement.

We suggest that teachers think of the research basis for TI-Nspire use in terms of three layers:

1. Effectiveness. TI-Nspire builds on and unites two strong research findings: Graphing

calculators enhance student learning. Incorporating formative assessment into everyday

teaching practice is highly effective. When integrating TI-Nspire learning handhelds into

their practice, teachers can draw insights from a rich literature substantiating effective use

of graphing calculators and formative assessment in mathematics and science classrooms.

2. Enhanced representation and communication of important mathematics. TI-Nspire’s

linked representations should help teachers to focus students’ attention on the relationships

among multiple representations, such as algebraic equations, geometric constructions,

graphs, and tables of data. Networking capabilities can increase student participation and

engage students in mathematical thinking and communication around these

representations. TI-Nspire’s multiple representation and communication capabilities can

make thinking visible and can support the classroom teacher to engage students in doing
and discussing important mathematics.

3. Deeper opportunities to learn. Using the new document and networking features of

TI-Nspire, teachers can develop classroom practices that increase the time students spend

doing mathematics in an environment that has the ingredients for success: increased

support for mastering difficult concepts and skills; high student participation; and tools for
reflective practice.

The opportunity to draw upon research support at these three levels should be exciting for

educators and scholars who are looking for new ways to improve mathematics learning, especially

as educators begin to draw upon the benefits of having capabilities that extend beyond the familiar

graphing calculator. For example, teachers will have new opportunities to differentiate instruction.

Additional instructional models will allow teachers to support project-based learning, engage in

participatory simulations, and encourage students to build mathematical models. Teachers who use

the new communication capabilities to engage students in more active participation may achieve

increased attendance, less disciplinary problems and a more cooperative classroom environment.

Overall, educators and scholars may use TI-Nspire handhelds as their vehicle for exploring new
ways to give every student an engaging, inspiring, and successful learning experience.



Introduction

With the release of TI-Nspire™ math and science learning handhelds, Texas Instruments offers a

learning platform with augmented capabilities that extend its traditional graphing calculator line.

We anticipate that educators and researchers will look at this new platform as an opportunity to

advance mathematics teaching practice and student learning outcomes. The platform includes both

new features on the handheld device as well as the classroom networking capabilities: it is a

platform for calculating, representing and communicating mathematically. The features available

on the handheld device are also available via software that can be installed on a laptop or desktop

computer. One key new capability is that students work in a “document”, an organized

presentation of multiple screens of mathematics which can be saved, shared, annotated, and

revisited. The design of this platform, including the new document capability, has been informed

by and aligns with research principles. We suggest a framework which educators and researchers

may find helpful in articulating the research basis for their efforts to improve teaching practices
and mathematics achievement.

We suggest thinking of the research basis for the use of TI-Nspire in terms of three layers:

1. Effectiveness. TI-Nspire builds on and unites two strong research findings: Graphing

calculators enhance student learning. Incorporating formative assessment into everyday

teaching practice is highly effective. When integrating TI-Nspire learning handhelds into

their practice, teachers can draw insights from a rich literature base substantiating effective

use of graphing calculators and formative assessment in mathematics and science
classrooms.

2. Enhanced representation and communication of important mathematics. TI-Nspire’s

linked representations should help teachers to focus students’ attention on the relationships

among multiple representations, such as algebraic equations, geometric constructions,

graphs, and tables. Networking capabilities can increase student participation and engage

students in mathematical thinking and communication around these representations.

TI-Nspire’s multiple representation and communication capabilities can make thinking

visible and can support the classroom teacher to engage students in doing and discussing
important mathematics.

3. Deeper opportunities to learn. Using the new document features of TI-Nspire, teachers

can develop classroom practices that increase the time students spend doing mathematics

in an environment that has the ingredients for success: increased support for mastering
difficult concepts and skills; high student participation; and tools for reflective practice.

We discuss each layer of support in separate sections below. In each section, we describe both
what research says and what teachers can do.
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How TI-Nspire™ Can Enable Better Teaching

What Research Says What Mathematics Teachers Can Do

Effectiveness

Graphing calculator use increases

student achievement. In particular,

students who use calculators daily

or weekly learn more.

Use TI-Nspire’s calculator, algebra, graphing, table, and geometry features
to:

1. Emphasize problem solving and concepts, not just right answers.

2. Engage students with interactive exploration.

3. Focus students who have mastered underlying calculations on

mathematical concepts, strategies and justifications.

Formative assessment increases

student achievement.

Use TI-Nspire’s ability to involve all students in a quick assessment to:

 Pose questions that stimulate student reasoning and explanation.

 See what students are thinking and doing to help them improve.

 Give students feedback more often and more quickly than is

possible through graded homework.

 Gauge whether the pace of instruction is too fast or too slow.

Enhanced representation and communication of important mathematics

Linked multiple representations

(e.g., equations, graphs, tables,

geometric sketches, words) enable

students to master difficult

concepts.

Use TI-Nspire’s clear and expressive representations to:

1. Reinforce the meaning of a representation (e.g., what each axis in a

graph represents).

2. Focus attention on the same mathematical idea across

representations.

3. Explore the effects of changing variables across representations.

4. Integrate geometric tools into the teaching of graphical concepts

(e.g., construct a rectangular area under a curve).

5. Introduce topics, such as modeling, that were previously too time

consuming.

Classroom networking engages

students in doing and

communicating important

mathematics.

Use TI-Nspire with TI-Navigator’s classroom network to:

1. Accelerate student thinking by sending mathematical ideas, models

and tasks to students and rapidly collect their work for discussion.

2. Allow students to communicate with multiple

representations—words, equations, graphs, or geometric sketches.

3. Base classroom discussions on student work and, through attention

to student work, show that mathematical communication is valued.
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How TI-Nspire™ Can Enable Better Teaching

What Research Says What Mathematics Teachers Can Do

Deeper opportunities to learn

Students learn more when they

have more academic learning

time, tasks are neither too easy

nor too hard, and they experience

early and frequent success.

Use documents and a classroom network to:

1. Prepare a context for student work so they can start mathematical

work quickly.

2. Organize a sequence of tasks so students succeed early and

frequently (e.g., differentiated instruction).

3. Send a common starting point (e.g., a function and graph zoom

settings) to all students, thus “getting on the same page” instantly.

4. Reduce the class time spent distributing and collecting assignments.

Students learn complex

knowledge and skills best when

teachers provide

scaffolding—supports and

resources that fade as students

gain mastery.

Use documents and a classroom network to:

1. Provide worked examples for students to use as models.

2. Demonstrate the steps or phases in a mathematical investigation.

3. Examine the connections between and across rich mathematical

problems.

Students can help each other to

learn and collaborate to improve

ideas; participatory activities are

a powerful resource for

accelerating learning.

Use documents and a classroom network to:

1. Help students to work together productively, for example, by

building on each others’ mathematical ideas, offering constructive

critiques, and taking complementary roles in a shared project.

2. Encourage students to collaborate on a presentation of a shared

solution to a complex problem.

3. Develop complex mathematical ideas through participatory

simulations—shared simulations in which each student plays a

unique role in the group experience of a mathematical phenomenon.

4. Involve students in constructing a mathematical narrative

together—a shared mathematical performance in which students

must coordinate their mathematical contributions to achieve a shared

goal.

Reflection and revision are at the

heart of learning—and also

learning to be a better learner.

Use documents and a classroom network to:

1. Compare a prediction to what happens in an exploration.

2. Aggregate students’ individual work as the basis for group

discussions.

3. Explore generalizations across different students’ solutions.

4. Create opportunities to revise and improve students’ mathematics.
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 Effectiveness

TI-NspireTM builds on and aligns with two strong research findings: Graphing calculators enhance

student learning. Incorporating formative assessment into everyday teaching practice is highly

effective. When integrating TI-Nspire learning handhelds into their practice, teachers can draw

insights from a rich literature base substantiating effective use of graphing calculators and

formative assessment in mathematics and science classrooms. We discuss both the graphing

calculator and formative assessment research bases below.

In mathematics, graphing products are integrated in national and many state standards (e.g., Texas

Legislature 1998; National Council of Teachers of Mathematics 2000) and supported in curricula.

Best practices of instruction are well-documented (Burrill et al., 2002) and teacher professional

development offerings are widely available. Using graphing products, teachers can enhance their

classroom by:

 Increasing the attention to conceptual understanding and problem solving strategies by
providing computational support and spending less class time on laborious computations

 Examining the related meanings of a concept through display of multiple representations,
such as exploring rate of change in a graph (i.e., slope) and table

 Engaging students with interactive explorations, real world data collection, and more
authentic data sets

 Giving students more responsibility for checking their work and justifying their solutions

 Introducing topics that were previously too difficult for many students (e.g., modeling)

In this section, we summarize the research on graphing calculators across a spectrum of data sets.

Experiments in which students are randomly assigned to control and treatment groups are the gold

standard for educational research. A large number of such studies has been conducted. When

many experimental studies have been performed, researchers summarize the results via a meta-

analysis, which provides policymakers with a robust estimate of an intervention’s true

effectiveness. A meta-analysis by Ellington (2003) reviewed an inclusive set of 54 high-quality

experimental studies. This meta-analysis shows a reliable positive effect of graphing calculator-

based interventions upon student achievement. In addition, the studies suggest that when graphing

calculators are allowed on tests, gains extend from calculations and operations to conceptual

understanding and problem solving performance. A second meta-analysis looked specifically at

algebra. Khoju, Jaciw, & Miller (2005) screened available research using stringent quality-control

criteria published by the U.S. Department of Education’s What Works Clearinghouse. They

selected eight high-quality studies examining the impact of graphing calculators on K-12

mathematics achievement. Four of these studies specifically assessed the impact on algebra

learning. Across a wide variety of student populations and teaching conditions, use of graphing

calculators with aligned instructional materials was shown to have a strong, positive effect on

algebra achievement.

Educators and policymakers often have questions beyond “what works”—they want concrete

guidance on how to achieve an effective implementation and confidence that if they implement at
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scale, they will see positive results. Strong graphing calculator research is available to address

these concerns. A study by Heller (2005) described and studied a model implementation, which

included a new textbook, teacher professional development, and assessment—all aligned with the

graphing technology by the theme of “Dynamic Algebra.” This study establishes that the teachers

and students who used graphing calculators most frequently learned the most. The National Center

for Educational Statistics signature report, “The Nation’s Report,” (National Center for Education

Statistics, 2001, p. 144) provides confidence that frequent use at the eighth grade level (but not at
the fourth grade level) is associated with greater mathematics achievement, stating:

Eighth-graders whose teachers reported that calculators were used almost every day

scored highest. Weekly use was also associated with higher average scores than less

frequent use. In addition, teachers who permitted unrestricted use of calculators and

those who permitted calculator use on tests had eighth-graders with higher average

scores than did teachers who did not indicate such use of calculators in their

classrooms. The association between frequent graphing calculator use and high

achievement holds for both richer and poorer students, for both girls and boys, for

varied students with varied race and ethnicity, and across states with varied policies
and curricula.

In summary, the evidence for the impact of calculator use on student achievement is robust and

consistent. Ellington’s (2003) summary of 54 studies includes a wide variety of grade levels,

socioeconomic background, geography, and specific mathematical content. More than 80% of

those 54 studies employed some form of random assignment to calculator use; this is the strongest

research design known. The effects (particularly when calculators are used for both instruction and

assessment) are substantial, often increasing an average student’s achievement by 10 to 20

percentile points. In examining the impact of graphing calculators on algebra achievement in

particular, Khoju, Jaciw, & Miller (2005) found even stronger effects. Lastly, all of these results

are corroborated by consistent findings from the National Assessment of Educational Progress

(NAEP), which reports higher achievement for students who use calculators frequently, drawing
from a nationally representative sample of students (NCES, 2001).

Formative assessment draws upon another but equally strong research base. Formative assessment

stems from the idea that providing constructive feedback early in the learning process can improve

student achievement. A former president of the American Educational Research Association
wrote:

In order for assessment to play a more useful role in helping students learn it should

be moved into the middle of the teaching and learning process instead of being

postponed as only the end-point of instruction. Dynamic assessment…is integral to

Vygotsky’s idea of a zone of proximal development. This type of interactive

assessment, which allows teachers to provide assistance as part of assessment, does

more than help teachers gain valuable insights about how understanding might be

extended. It also creates perfectly targeted occasions to teach and provides the means
to scaffold next step. (Shepard, 2000, p. 10).

It is important to realize that formative assessment is not just conventional testing: it can happen

on any occasion during which students “make thinking visible” (Bransford, Brown, & Cocking,

2000, p. 220) and teachers offer comments that give students direction on how to improve.
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Because many new technologies are interactive (Greenfield & Cocking, 1996), it is now possible

to create environments in which students can learn by doing, receive feedback, and continually

refine their understanding and build new knowledge (Scardemalia & Bereiter, 1993). Assessment
and learning can be intimately linked in technology-rich learning environments.

When teachers’ questions are used to deepen students’ higher-order thinking and when feedback is

provided to students on how they can improve, significant learning gains can occur (Dillon &

Wittrock, 1984; Gall, 1984; Redfield & Rousseau, 1981; Samson, Strykowski, Weinstein, &

Walberg, 1987). In addition, higher achievement levels are reported in classrooms where students

are involved in checking their own understanding of concepts and assessment data are used to

inform and adjust instruction (Black & Wiliam, 1998; Fuchs & Fuchs, 1986). Meta-analytic

studies and research reviews have shown that better classroom assessment results in significant

gains in learning outcomes. In their review of 21 separate classroom assessment studies, for

example, Fuchs and Fuchs (1986) found that the systematic use of data from formative

assessments can dramatically improve learning outcomes. The researchers found that formative

evaluation practices had a strong effect on achievement , when compared to control condition in

21 separate studies. Put differently, one could predict that teachers’ use of formative assessment

data to adjust instruction would raise the typical achievement outcome scores on a norm-

referenced test from the 50th percentile to the 76th percentile. The conclusions of Black and

Wiliam (1998, p.), based on their review of more than 250 separate studies and meta-analyses of a

wide range of classroom assessment practices, are similar to those of Fuchs and Fuchs. Their

synthesis found large effects for classroom assessment on student learning, effects greater than for

nearly any other type of educational intervention:

For public policy toward schools, the case to be made here is firstly that significant

learning gains lie within our grasp. The research reported here shows conclusively

that formative assessment does improve learning. The gains in achievement appear

to be quite considerable, and as noted earlier, amongst the largest ever reported for

educational interventions. (Black and Wiliam 1998)

TI-Nspire does not propose a one size-fits-all formative assessment solution, but it is designed to

integrate with teacher’s formative assessment practices. Teachers can use TI-Nspire learning

handhelds to enhance formative assessment in at least three ways. First, TI-Nspire documents

“make thinking visible.” Whereas before students had to copy their work onto paper in order to

show their work, now they can capture and present how they arrived at a problem’s solution in the

document format and share it with the classroom using the classroom network. Even more

importantly, the early phases of mathematical exploration can now be preserved and discussed, not

just “answers” and “solutions.” Thus documents provide a basis for teachers to ask better

questions. Second, teachers can now prepare assessments by writing a test as a document, enabling

the tests to more easily incorporate technology capabilities, such as multiple representations and

scaffolding. Even simple tests can be used as a “quick poll” that checks student understanding,

with results instantly aggregated for all to see. This can enable teachers to adapt classroom

instruction to more closely fit student needs. Finally, documents support mathematical

argumentation in the classroom. A teacher may more easily compare and contrast solution

approaches using different representations, for example. Or a teacher might ask students to extend

and generalize a previous approach to a mathematical challenge. Again, documents and the
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classroom network provide a basis for deeper questioning which in turn will lead to deeper
learning.

TI-Nspire naturally builds upon the strong graphing calculator research base and aligns with the

powerful formative assessment research base. This enables teachers to build upon both NCTM

principles and state-level guidelines for the incorporation of graphing technology. The formative

assessment capabilities further allows teachers to align instruction with the increasing emphasis on

assessment within mathematics education, without reducing emphasis on doing important

mathematics. Teachers who want to make a strong research-based case for their instructional plans

using TI-Nspire need look no further than the strong and unambiguous research base for graphing

calculator use and formative assessment.
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 Enhanced Representation and Communication of Important Mathematics

TI-Nspire™ math and science learning handhelds feature several striking improvements to both
the representation and communication of mathematical ideas. We will address representation first.

TI-Nspire learning handhelds have bigger, sharper screens, allowing graphs to be explicitly

labeled and for students to see graphed functions in more detail. In addition, TI-Nspire learning

handhelds display expressions in standard mathematical notation and in a textbook-like format

(e.g., 2
3
1 x ) rather than a computer-like format (e.g., 1/3 x^2). Further, TI-Nspire learning

handhelds integrate graphing and geometry in one Cartesian plane, enabling the construction of a

line tangent to a graph, for example. Finally, TI-Nspire learning handhelds support showing two or

more different representations of the same mathematics on the same screen, with live data flows

between them. In combination, the representational features of TI-Nspire learning handhelds

provide clearer expression of big mathematical ideas.

These features connect most strongly to the existing research base on linked multiple

representations. Researchers have found that students learn concepts more readily when they

experience the concepts across different forms of notation (Davis & Maher, 1997; Kaput, 1992;

Kaput, Noss, & Hoyles, 2002). A wide variety of multiple representational tools have been

developed in mathematics, most of which leverage graphing and geometry as key representations.

Small-scale studies with such tools amply demonstrate that a multiple representations approach

can produce gains in deep mathematical understanding for diverse children across a range of

settings (Roschelle, Pea, Hoadley, Gordin, & Means, 2000). For example, after a pre-algebra

course that emphasized multiple representations, anchoring mathematics in a meaningful context,

and cooperative problem solving, students were better at representing and solving function word

problems than students in a control group (Brenner et al., 1997). A meta-analysis that summarized

findings from over 100 research studies involving over 4,000 experimental/control group

comparisons found that both (1) representing knowledge graphically and (2) using manipulatives

to explore new knowledge and to practice applying it had a large effect size (Marzano, 1998). A

multiple representations approach to mathematics combines these techniques and thus should be
exceptionally effective.

To illustrate the use of multiple representations, consider the concept of a rate of change, which

relates to:

 The value of m in y=mx+b

 The differences between sequential rows in a table of x and y values

 The slope of a graphed line

Technology makes it possible to present multiple representations on the same screen and, more

importantly, to explore how changing one representation affects the others. For example, a student

can increase the value of m and see simultaneously more rapidly increasing table values and a

steeper slope in the graph (Confrey & Smith, 1994). The numerical patterns in the linear equation

are then visually linked. As the values change, the existence of variable relationship between m

and the ordered x and y pairs is immediately seen by students. Such real-time visual modeling

enhances interactive feedback to students. Through interactive feedback, students can more
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rapidly correct misunderstandings (Bloom, 1984). With the support of teacher-guided and

collaborative conversation about multiple representations, students came come to understand the

meaning of mathematical expressions (Roschelle, 1992). Consequently, researchers in both

science and mathematics have identified linked dynamic representations as one of the key benefits
of technology (Kaput, 1992; Kozma, Russell, Jones, Marx, & Davis, 1996).

TI-Nspire handhelds also enable communicating with representations via the TI-Navigator

classroom networking technology. As mentioned in the formative assessment section, classroom

networking can be used to increase feedback both to students and to the teacher. However, TI-

Navigator should not be understood narrowly as a testing capability. TI-Navigator also makes

possible new forms of classroom communication. With TI-Navigator, teachers can send students

one or more screens of preconfigured representations and thus instead of communicating about

which buttons to push to get started, teachers can focus their discussion on the mathematics at

hand. Further, teachers can harvest examples of work from students and rapidly bring those

examples to the front of the classroom for discussion. Even more profoundly, teachers can

aggregate student work and engage students in participatory simulations. (These advanced

capabilities will be described in more detail below in the “Opportunity to Learn” section).

For example, consider the aforementioned use of multiple representations for the concept of rate

of change. By using TI-Nspire with the classroom network, a teacher could begin the lesson by

sending students a document that combines the three representations (i.e., equation, graph, and

table) on the same screen. Instead of using valuable classroom time to tell students how to set up a

screen with all three representations, the teacher can now immediately engage students in

exploring the consequences of varying “m” vs. the consequences of varying “b.” Further, the

teacher can ask students to find a way to make a downwards slope. By harvesting student work,

the teacher can engage the classroom in looking at examples and having a discussion around the

question “What is the same about the value of ‘m’ in all the different, downward-sloping lines that
you made?”

The representation and communication features of TI-Nspire handhelds fit together to support the

teacher in making mathematical thinking and communication the focus of the mathematics

classroom. The bigger screen and clearer labeling should support teachers as they introduce and

explain the meaning of each representation. For lower-achieving students, in particular, teachers

will likely need to reinforce the meanings of each axis of a graph and the basics of plotting and

reading points. Because TI-Nspire learning handhelds support more than one representation on the

same screen, teachers can now more readily focus attention on how the same mathematical

property looks across representations., The availability of geometry in graphs enables teachers to

better integrate geometric and algebraic concepts, such as “this rectangle represents the area under

this section of curve.” The better capabilities to link dynamically across representations should

enable teachers to explore the effects of changing variables and to engage students in the context

of real world data. In support of these representational capabilities, the classroom networking

capabilities can allow teachers to see what students are thinking and doing in order to help them

improve. Teachers can allow students to communicate by sending mathematical representations to

the shared display and communication, which should enable students to better explain their work

and support their arguments. Finally, as described in the slope example above, teachers can build

classroom discussions around the similarities and differences in students’ work. Through attention
to student work, teachers can show that student mathematical ideas and explanations are valued.
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 Deeper Opportunities to Learn

Using the metaphor of a document to organize classroom work with technology has a long history

in educational technology, beginning with Hypercard (Means et al., 1993) and continuing with key

innovations, such as the “Progress Portfolio” (Loh et al., 1997), which enabled students to

document what they were learning with technology. A document model fits classrooms well

because teachers and students are already accustomed to assigning, working on, collecting,

annotating, and discussing documents, such as worksheets and homework. Much of the ordinary

work of mathematics classrooms is already document-based. Now students can carry their own

document-based learning technology in their hand and teachers can integrate the work students do

on handhelds into the document-based flow of classroom activity.

In TI-Nspire™ math and science learning handhelds, a document presents a sequence of pages of

work that can be saved and later opened. Each page can contain more than one mathematical

representation. For example, a teacher can construct a page with a table to the left and a graph to

the right and the same function appearing in both. This page may be saved and later re-opened.

Using a set of related pages, a teacher can present a sequence of ideas from simple to complex, all

of which may be prepared in advance. An obvious advantage of documents is that they can be

used to emphasize mathematical structure and can organize an extended sequence of mathematical

activities. Without documents, it is difficult to structure activity across more than one screen and

teachers spend valuable classroom time describing which keystrokes are necessary to navigate to
or produce a particular display.

A classroom network is a natural complement to a document-based approach. In normal

classrooms, teachers pass out and collect assignments in the form of documents. When TI-Nspire

handhelds are used in conjunction with the TI-Navigator network, teachers will be able to rapidly

distribute and collect technology-based documents. Moreover, teachers can do more than was ever

practical in a paper based format. For example, with TI-Navigator, a teacher can display multiple

students’ work on one screen. A teacher can ask students to make functions that are equivalent to

f(x) = 2x. Students may come up with f(x)=4x/2, f(x)=4x-2x, and many other possibilities. When

collected onto one screen via TI-Navigator, a teacher could display the different functions and

how they all result in the same graph, powerfully re-enforcing the meaning of equivalence

(Wilensky & Stroup, 1999). Without a network, it would be much more difficult to look at the

equivalence across student-constructed functions.

The document capability is a new feature in a handheld mathematics platform. Hence there is no

direct research relating document features to mathematics learning gains. Nonetheless there are

good reasons to be optimistic. The capabilities of documents align with long-standing findings in

the scientific literature on how people learn (Bransford, Brown, & Cocking, 2000). This capability

can enable teachers to create a more engaged classroom, with greater motivation and achievement.

For example, Blumenfeld (1992) summarized the teacher practices that lead to high engagement
and achievement as:

 Providing meaningful opportunities to learn

 Using high-quality instructional techniques, such as offering concrete illustrations and
analogies and connecting new concepts to prior knowledge
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 Pressing students to think by requiring them to explain and justify

 Supporting students by providing samples they can use, modeling the thinking process,
breaking tasks into manageable steps, and encouraging collaboration

 Evaluating students frequently, with an emphasis on comprehension and mastery and
allowing opportunities for revision

The classroom network capability has been around for a few years (e.g., it is available for TI’s TI-

84 graphing calculator line) and thus some research has accumulated. In general, this research

emphasizes the opportunities to use networks to transform the degree of student participation in

doing mathematics in the classroom and to introduce students complex and conceptually difficult

mathematical ideas in new ways (Stroup, Ares & Hurford, 2005; Stroup et al, 2002; Hegedus &

Kaput, 2004). Below we discuss four alignments between research and TI-Nspire document and

networking capabilities. These alignments offer teachers the occasion to enhance their classroom

practice by providing students with more meaningful opportunities to learn.

Academic Learning Time

The importance of time is an enduring issue in educational research (Ellis, 1984; Brophy & Good,

1986). A seminal 1963 article (Carroll, 1963) proposed a model of learning in which the two

dominant factors are (1) the time needed for learning and (2) the time actually spent in learning.

Clearly, as educators seek higher standards of student achievement, the time needed for learning is

soaring. However, merely increasing time allocated to learning a particular topic or subject is not

enough. Integral to student achievement is ample “academic learning time” (Fisher & Berliner,

1985). Academic learning time is engaged time during which students succeed at tasks that have
an appropriate level of difficulty (Cotton, 1989).

Research has found a strong relationship between increased academic learning time and stronger

student achievement (Wang, Haertel, & Walberg, 1993/1994). High-quality academic learning

time has been found to be particularly important for low achievers; much of the benefit in

interventions appears to be related to engaging low achievers in spending more time doing

academic work and experiencing success. For such students, increasing the academic learning time

reduces their anxiety and enhances their learning outcomes (Cotton, 1989).

While technology is no guarantee of increased academic learning time, teachers can use

technology to enhance time-on-task. The timing decisions of task implementation can play an

important role in student academic engagement (Henningsen & Stein, 1997). Obviously teachers

will want to select products that start up quickly and almost never break. Beyond these basics,

technology should reduce the transition time between learning tasks for the student and

accommodate tasks of varying levels of difficulty. The document capability of the TI-Nspire

learning handhelds is a promising innovation in both respects. First, with regard to transition time,

by providing a document for the students’ learning tasks, the teacher can reduce set-up time and

enable the student to quickly transition from “turn it on” to “begin solving the mathematical

problem.” TI-Navigator enables teachers to quickly send documents to all students. Second, with

regard to level of difficulty, a teacher can provide a document in which there are related tasks at

different levels of difficulty. (In addition, see the discussion of scaffolding below—the teacher can

provide more support in the document thus making it easier for students to succeed at a difficult
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task). TI-Navigator additionally allows the teacher to quickly poll student thinking or harvest

student work and to adapt instruction accordingly. For example, by providing students with a

document that contains a variety of related tasks, teachers can help students at different levels to

engage and succeed, thus implementing differentiated instruction (Kameenui & Carnine, 1998) in
a practical and meaningful way.

Scaffolding Mathematical Argumentation

The practice of scaffolding is derived from Russian psychologist Vygotsky and his concept of a

zone of proximal development (1978). Vygotsky observed that, under conditions of effective

support, a child can engage in a more complex performance than the same child can without

support. Eventually, as the complexity is mastered, the student can perform the complete complex

skill with less and less support. Importantly, Vygotsky found that social support is a profound

form of scaffolding; students often perform advanced skills first with the support of a social group

and individually only later. The term “scaffolding” comes from an analogy to the construction of a

building. When a building is constructed, first scaffolding is erected to support the project. Later,

when the building is complete, the scaffolding can be removed. As a pedagogical principle,

scaffolding suggests initially providing a supportive social environment and supportive resources

that enable students to succeed and then gradually fading the support as students master
increasingly complex skills (Greenfield, 1999).

In mathematics, educators often describe important yet complex skills by contrast to what they are

not: meaningless manipulation of symbols and algorithms. Important and complex skills in

mathematics include making conjectures, investigating patterns, examining premises, and

justifying solutions (Cobb & Bauersfeld, 1995; Lampert, 1990). Practically speaking, teachers can

help students in these important skills by making collective argumentation a central classroom

activity (Forman, Larreamendy-Joerns, Stein, & Brown, 1998; Wood, 1999; Yackel & Cobb,
1996).

Mathematical argumentation is hard for students to do alone. Researchers have found that students

can develop this skill if teachers provide the right scaffolding (Henningsen & Stein, 1997).

Research has found that the best scaffolding is often a mix of social and technological support

(Puntambekar & Hübscher, 2005). Social support is needed to establish classroom norms and

discussion processes that establish a safe, productive context for mathematical argumentation

(Wood, 1999; Yackel, 2002). Technological support can motivate student interest and provide a

means for generating, exploring and organizing claims and evidence (Puntambekar & Hübscher,

2005). Students often rely on examples and demonstrations in creating their initial arguments

(Knuth, Choppin, Slaughter, & Sutherland, 2002). Technology can provide ways to structure

student activity with complex concepts or data sets and thereby provide a supportive context in

which teachers can focus on mathematical argumentation and not just manipulation of symbols

and algorithms.

For example, a teacher who wants students to focus on examining and predicting patterns in

sequences of numbers can provide a spreadsheet environment that supports both exploring the

patterns and trying out different formulas to predict the values in a distant place in the sequence

(Niess, 2005). In another case (McClain, Cobb, & Gravemeijer, 2000), a teacher worked with

researchers to define focused explorations and investigations that students could do with

technology. By engaging in mathematical argument around comparison and contrast of student
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work, students changed their view of what it means to do statistics and developed deeper
understanding of statistical concepts.

The capabilities of the TI-Nspire learning handhelds provides an opportunity to both scaffold and

fade support for learning difficult mathematics concepts and skills. For example, international

comparison tests like TIMMS show that multistep problem solving is difficult for many students

(National Research Council, 1999). A teacher who wants students to master a task that requires

multistep problem solving could provide a series of pages in a document, each which supports

doing one step. Later, this step-by-step breakdown could be removed, so the student must

complete the whole problem alone. Using the classroom network, the teacher also has the

possibility of making an initial plan for problem solution together as a class and then sending

students that initial plan as a document. Students may then work independently or in groups. At an

appropriate point, teachers may collect students progress via the network and discuss it with

students at the front of the classroom. Thus the network allows working a complex problem

through a mixture of teacher-led work and small-group or student-led work. TI-Nspire documents

provide a new way to structure materials to scaffold student learning and TI-Nspire networking

enables new ways to structure social participation in the classroom to scaffold student learning.

Participatory Activities

Every teacher has the goal of engaging his or her students. “Engagement,” however, like

“motivation,” is often thought of as an ingredient needed to support the hard work of learning

mathematics. TI-Nspire’s networking features provide a new way to realize engagement and

motivation – a way to accomplish these with less reliance on rewards or gimmicks. Using TI-

Nspire’s networking capabilities, students have an opportunity to learn by participating in social

mathematical activities. Researchers are finding that when social participation becomes more

deeply tied to mathematics learning, motivation and engagement come naturally. Students learn

more when they are engaged and disciplinary problems and drop out go down (Fin, 1989; Klem &

Connell, 2004; Newmann, 1992; Roderick & Engle, 2001; Willingham, Pollack, & Lewis, 2002)."

In participatory activities, social and mathematical aspects of learning are interconnected (Stroup

et al., 2002). This makes mathematical learning more akin to play than work—indeed, real

mathematicians and scientists tend to describe their peak breakthroughs as arising through playful

activities, not through endless computational drudgery (Stefik & Stefix, 2004). Further, research

has consistently found that students learn more when encouraged to engage in helping behaviors

with their peers, for example when they building on each others’ mathematical ideas, offer

constructive critiques, and take complementary roles in a shared project (Webb & Palinscar,

1996). In general, research in the learning sciences has increasingly come to see learning not

merely as cognitive, but also as importantly social and participatory (Sawyer , 2006). Participation

deeply links to engagement and motivation through the notion of belonging (Lave & Wenger,

1991). Students want to learn in order to belong, not only in order to know. When students have a

sense of belonging, as well as other components of a healthy climate such as trust and safety, they

learn more (Lee et al, 1999). Participatory activities link the opportunity to belong to a classroom

activity to the opportunity to learn.

Participatory simulations provide a classic, although not the only form of playful, belonging-

oriented activity that leads to important mathematics learning (Stroup, Ares & Hurford, 2005). In a

simple participatory simulation, every student controls a point that is graphed on a Cartesian
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plane. The points are initially randomly distributed all over the plane and students are allowed to

play with moving their point randomly, so as to discover how they can control it. Then the teacher

asks the students to “make your y-coordinate twice your x-coordinate.” As the students move their

points, a line suddenly emerges. This line is made only when every student participates and is a

shared construction which belongs to the classroom as a whole. The surprising emergence of the

line also provides the teacher with a profound opportunity to ask students “why did you get a

line?” or “what other rules might make a line?” and thus inquire into the kind of rules that lead to

linear functions. In the play a part in the participatory simulation, students are naturally motivated

and engaged but also deeply involved in understanding the topic of linear function. Further the

students are not just finding solutions, they are involved as a group in generating interesting
mathematics (Stroup, Ares & Hurford, 2005).

Another form of social, mathematical activity that draws intense student participation might be

termed “participatory narratives.” In a language arts class, students might make a story by each

contributing a sentence to an evolving plot. Naturally, students are more interested in the resulting

story when they each contribute a line than when only the teacher or only a single student are

involved. Researchers in the SimCalc project have discovered a powerful analogy in the

mathematics classroom: students can each contribute a mathematical function to a group

performance that is driven mathematically (Hegedus & Kaput, 2004). Using the SimCalc software,

which connects individual student devices via the TI-Navigator network, each student can write a

function that will drive the motion of a character. For example, the position functions f(t)=t and

f(t)=2t drive a slower and faster animated motion, respectively. Using this capability, students

write functions that tell a story together, e.g., “we started at different places, one of us walking

slowly and the other quickly, and met at the end of 10 seconds of walking.” Participating in

performing this story together, via the network, both requires serious mathematical thinking and

encourages productive classroom discussion. Indeed, researchers are finding that when students

make a mathematical object and contribute it to a group construction on the teachers’ display,

students can become intensely involved in arguing about the correct understanding of the resulting

mathematical phenomena (Hegedus & Kaput, 2004).

Using TI-Nspire, teachers will have opportunities to increase student participation in these and

other ways. For example, teachers can encourage students to collaborate on a document that they

use to present their shared solution to a mathematical investigation. Further, a teacher can choose

one example of student work anonymously and display it to the classroom. Rather than merely

critiquing the work, the teacher can ask how it might be improved or extended. Then that students’

work could be instantly distributed to all students in the class, who are asked to make it better or

extend it further. In beginning a unit, teachers can ask students to individual explore a model that

was provided to them in a document. By displaying and discussing what students discover,

however partial, incomplete, or uncertain, the teacher can set the stage for the important
mathematical learning that will be addressed as the unit progresses.

Reflection and Revision

The landmark volume entitled “How People Learn” (Bransford, Brown, & Cocking, 2000, p. xii)
summarizes the results of decades of learning science research and highlights the discovery that:

Individuals can be taught to regulate their behaviors, and these regulatory activities

enable self-monitoring and executive control of one's performance. The activities
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include such strategies as predicting outcomes, planning ahead, apportioning one's

time, explaining to one's self in order to improve understanding, noting failures to

comprehend, and activating background knowledge.

The research basis linking self-regulation and achievement is exceptionally strong (e.g.,

Zimmerman & Pons, 1986). For example, students who review a prepared problem solution and

“self-explain” the steps of the solution learn more than students who do not study this way (Chi,

deLeeuw, Chiu, & Lavancher, 1994). When students learn these self-regulatory, meta-cognitive

skills they become better learners. This insight reinforces a dual mission that teachers have always

understood: mathematics teaching should both result in mastery of topics and also prepare students

for future learning. Yet just as “Rome was not built in a day,” a busy teacher cannot expect to

transform students’ meta-cognition while also addressing a jam-packed curriculum. Two key

activities that teachers can sensibly focus on are reflection and revision, both of which relate to

essential mathematical practices, such as abstraction, generalization, proof, and communication.

Reflection, that is engaging in the active processes of evaluation and justification, is a necessary

component of key mathematical practices, such as conjecturing, generalizing, abstracting, or

critiquing, and is central to deep learning of mathematics (Wheatley, 1992). Education theorists

have long supported the entwined processes of reflecting and learning. Polya (1957) proposed

reflection as one of four key mathematical processes. Dewey (1933) identified reflection as the

core activity of advanced thinking, leading to the concept of experts as “reflective practitioners”

(Schön, 1983). Freudenthal (1973) suggested that the essence of reflection in mathematics is

shifting one’s viewpoint to gain additional insight (also see Mason, 1989). More recently,

reflective activities, such as classroom discussion and elaborate student explanation, as guided by

the teacher are recognized promising practices (Grouws & Cebulla, 2000; The Access Center,

2006). As students reason their answers with others, they can be prompted to reflect on their

practice. With regard to mathematics specifically, research closely grounded in classroom realities

has noted that reflection involves specifically talking about mathematical activities, not just

mathematical results (Cobb, Boufi, McClain, & Whitenack, 1997). To reflect on mathematical

activities, those activities need to be captured and displayed in a visible form. A document seems
ideal as a way to capture mathematical activity as the basis for reflection.

Revision is also inherent to the mathematical processes of abstraction, generalization, and

justification. In research on how students can most effectively learn math, revision has gradually

moved from an optional “extra” to being a core instructional element (Carpenter & Romberg,

2004). Revision is not just about improving the final product, it also provides exceptional

opportunities for students to learn and teachers to teach (Fitzgerald, 1987). Mathematicians spend

an exceptional amount of time reflecting upon and revising their proofs, whereas in school most

students solve a problem and then move on to the next problem. We see documents as opening the

opportunity for teachers to engage students in revision: making their mathematical arguments
stronger, their insights clearer, and their generalizations broader.

Teachers can use the document capability of the TI-Nspire learning handhelds to engage students

in reflection and revision, thus helping students to learn how to learn. A teacher can structure a

document to have an early page that prompts students for predictions (e.g., what will happen to the

solution to simultaneous linear equations as the slope in one equation is increased?); students can

later compare their prediction to what they learned by exploring a page that graphs two linear
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equations. A teacher can provide worked examples and ask students to explain these to themselves

in preparation for solving a related problem. In turn, a teacher can engage students in discussing

the problem solving process. Furthermore, documents can support the important mathematical

practice of returning to prior work after a new insight and revising the mathematics to make it
better.
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Conclusion

Teachers can draw upon three levels of research alignment as they plan classroom use of TI-

Nspire™ math and science learning handhelds to enhance student achievement. First, strong

summative scientifically-based research supports the effectiveness of graphing calculators and

formative assessment in enhancing student achievement. Second, long traditions of mathematics

education research demonstrate the benefits of multiple representations, especially when combined

with activities that engage students in doing and communicating important mathematics. TI-

Nspire handhelds provide linked multiple representations and engage students in doing and

communicating mathematics via the TI-Navigator classroom network. Third, TI-Nspire aligns

with what scientists know about how people learn. Using the new document and network

capabilities, teachers should be able to increase academic learning time, scaffold mathematical
argumentation, increase student participation and encourage reflection and revision.
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